## Practice Questions

## Set 1

1. A sounding rocket is to be launched vertically from the earth's surface. It is designed for a 340 kg payload and the maximum acceleration during the burning period should not be greater than 4 g . The maximum propellant mass is 950 kg and $\varepsilon=0.1$. Let the $\mathrm{I}_{\mathrm{sp}}=250 \mathrm{~s}$.
Neglecting aerodynamic drag and considering constant g, determine:
(a) The minimum allowable burning period.
(b) The maximum height attainable.
2. A sounding rocket vehicle whose instantaneous total mass is 180 kg is at an elevation of 10 km from the surface of the earth and is moving up with a velocity of $1 \mathrm{~km} / \mathrm{s}$ at the burnt out. The cross sectional area of the rocket is $0.06 \mathrm{~m}^{2}$. What is the drag an the instantaneous rate of deceleration?

## Set 2

1. Consider a single stage rocket with a payload of 100 kg and an $\mathrm{I}_{\mathrm{sp}}=450 \mathrm{~s}$. The structural factor is 0.2 and the ideal $\Delta V$ is $2000 \mathrm{~m} / \mathrm{s}$. Calculate the mass at liftoff.
2. Determine the maximum $\Delta V$ for free space with a 3 stage rocket and the following conditions:
(a) $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=0.1$
(b) $\mathrm{I}_{\mathrm{sp} 1}=250 \mathrm{~s} ; \mathrm{I}_{\mathrm{sp} 2}=300 \mathrm{~s} ; \mathrm{I}_{\mathrm{sp} 3}=350 \mathrm{~s}$
(c) $\mathrm{M}_{1} / \mathrm{M}_{01}=0.01$
3. Determine the $\Delta V$ for free space with a 3 stage rocket and the conditions of problem 2 but assuming that $l_{1}=l_{2}=l_{3}=1=0.21544$
4. Determine the maximum free space $\Delta \mathrm{V}$ for a 3 stage rocket with following conditions:
(a) $\mathrm{s}_{1}=0.15, \mathrm{~s}_{2}=0.10, \mathrm{~s}_{3}=0.05$
(b) $\mathrm{I}_{\mathrm{sp} 1}=\mathrm{I}_{\mathrm{sp} 2} \mathrm{I}_{\mathrm{sp} 3}=270 \mathrm{~s}$
(c) $\mathrm{M}_{1} / \mathrm{M}_{01}=0.01$
5. Determine the $\Delta \mathrm{V}$ for free space with a 3 stage rocket and the conditions of problem 4 but assuming that $l_{1}=l_{2}=l_{3}=1=0.21544$.
6. Determine the maximum free space $\Delta \mathrm{V}$ for a 3 stage rocket with following conditions:
(a) $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=0.1$
(b) $\mathrm{I}_{\mathrm{sp} 1}=\mathrm{I}_{\mathrm{sp} 2} \mathrm{I}_{\mathrm{sp} 3}=270 \mathrm{~s}$
(c) $\mathrm{M}_{\mathrm{l}} / \mathrm{M}_{01}=0.01$ and $\mathrm{l}_{1}=\mathrm{l}_{2}=\mathrm{l}_{3}=\mathrm{l}=0.21544$.

## Set 3

1. We want to launch a satellite of 1500 kg into an elliptical orbit with a desired perigee of 7000 km and a desired apogee of 30000 km . Estimate the velocity of the vehicle at the apogee.
2. What is the orbital period of the satellite in question 1 around the earth?

## Set 4

1. A rocket is to be designed to produce 5 MN thrust at the sea level. The working fluid is assumed to be a perfect gas with properties of air at room temperature. Determine (a) $\mathrm{I}_{\mathrm{sp}}$, (b) mass flow rate, (c) throat diameter and (d) exit diameter for the following conditions:
(i) $\mathrm{P}_{\mathrm{c}}=7 \mathrm{MPa}$ and $\mathrm{T}_{\mathrm{c}}=3000 \mathrm{~K}$
(ii) $\quad \mathrm{P}_{\mathrm{c}}=7 \mathrm{MPa}$ and $\mathrm{T}_{\mathrm{c}}=3500 \mathrm{~K}$
(iii) $\quad \mathrm{P}_{\mathrm{c}}=20 \mathrm{MPa}$ and $\mathrm{T}_{\mathrm{c}}=2800 \mathrm{~K}$
2. Consider the performance of a solid-propellant rocket whose stagnation pressure changes slowly with time according to

$$
P_{0}=30-0.06 t, \quad 0<t<50
$$

for pressure in MPa and time in seconds. The stagnation temperature is constant at 3000 K . The nozzle area ratio is 5 and the throat area is 0.25 $\mathrm{m}^{2}$. It exhausts into ambient conditions at sea level. Consider $\gamma=1.4$ and molecular weight of the products to be 20 . How do the following vary with time?
(i) Exhaust velocity
(ii) Mass flow rate
(iii) Thrust

## Set 5

1. Compute $\mathrm{I}_{\mathrm{sp}}$ for an $\mathrm{H}_{2}-\mathrm{O}_{2}$ engine at sea level with $\mathrm{P}_{\mathrm{c} 0}=2 \mathrm{Mpa}$ for oxider/fuel mass ratio of 8 and 3.5 . Assume a fully expanded nozzle with no nozzle losses and a constant $\gamma$. Assume the following reaction

$$
a \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+(\mathrm{a}-2) \mathrm{H}_{2}
$$

use

$$
h_{c 0}=-\sum \frac{\dot{m_{J}}}{\dot{m}_{m}} \frac{\Delta H_{f, j}^{0}}{\overline{W_{J}}}
$$

